1. Thermal Imaging
  2. Thermal Micro Actuators for Nanotechnologies
Thermography in MEMS Micro Actuators Research

Thermal Micro Actu­ators for Nano­tech­no­lo­gies

Microelectromechanical systems (MEMS) offer a wide range of possible applications in the field of nanotechnology. Everyday examples are the position recognition of mobile phones and the use in airbags, digital cameras or pacemakers. Other applications can be found above all in the field of miniaturised medical diagnostics. Growing demands on miniaturisation affect both the system solutions required for this and the sensors and control elements to be developed.

InfraTec thermography casestudy tu chemnitz

Micromech­anics as Support for Future Nano­tech­no­logy Applic­a­tions

The Professorship of Microsystems and Biomedical Engineering at the Chemnitz University of Technology is working on MEMS-based micro actuators that are intended to serve as a control platform for analyses of nanocomponents and are only a few micrometres in size. Similar to conventional electromechanical positioning tables with three degrees of freedom, the aim is to enable high precision of horizontal or vertical movement of nanocomponents.

Download case study

InfraTec Solution

Chemnitz University of Technology
Professorship of Microsystems and Biomedical Engineering

www.tu-chemnitz.de/etit/microsys/index.php

Dr. Sebastian Voigt

Thermal Imaging System
ImageIR® 9300 infrared camera

ImageIR® 9300 and Ther­mo­graphy on Mini­atur­ised Actu­ators

The professorship was able to transfer 20 years of experience gained in the domain of electrostatic actuators to thermally driven actuators. The latter allow the use of electron microscopes for MEMS analysis, which would not have been an option with electrostatic actuators. Prototypes for thermal actuators have already been developed at Chemnitz University of Technology enabling motion control with an accuracy of up to 2 µm and 0.3°.

Achieving such precision requires a precise analysis of the material parameters on the actuators used. As expected with thermal actuators, the most important factor is measuring the component temperature as accurately as possible. Due to the very small dimensions and mechanical characteristics of these measurement objects, only the most sophisticated infrared cameras come into consideration. A microscopic lens was selected and combined with the large infrared detector of the ImageIR® 9300 with (1,280 × 1,024) IR pixels to achieve a resolution in the µm range and a large field of view to capture the peripheral components around the actuators.

InfraTec thermography casestudy tu chemnitz
Fig. 1: Thermal image of a MEMS-controlled actuator with three degrees of freedom and thermal drives

Diffrac­tion-limited Resol­u­tion

An ImageIR® 9300 with an M=8.0x microscope lens is used at Chemnitz University of Technology. With the spectral range of (1.5 ... 5.5) µm, this system reaches the limit of resolving power that is physically possible. Due to the experimental determination of the emissivity of individual test materials, the measured values obtained enable the determination of heat transfer coefficients and other material parameters. The evaluation is carried out with the IRBIS® 3 professional thermography software. In addition, a lock-in thermography test station with the InfraTec IRBIS® active solution is used for real-time active thermography. Since measurements are taken on silicon and aluminium, the emissivity coefficients are very low and require careful application of special correction models, a feature of the IRBIS® software used.

InfraTec thermography casestudy tu chemnitz
Fig. 2: Comparison of a microscopic image with a high-resolution thermal image taken with an ImageIR® 9300 and a M=8.0x microscope lens

Results

The results presented illustrate the thermal processes within the MEMS structures very clearly. Nevertheless, details remain that need to be clarified:

  • Working on the redesign of the actuators to reduce thermal crosstalk of the components.

  • Searching for a measurement method for holistic motion detection based on automated image evaluation of thermal images.

Also in view is an attempt to quantify the thermoelastic damping in the MEMS springs at excitation frequencies up to approx. 10 kHz. These analyses also require the high-precision trigger interface of the ImageIR® 9300 in order to be able to follow quickly and precisely with the help of active thermography. At this point, the ability of lock-in thermography to display the smallest temperature differences will increasingly take effect.

Future applications will make even greater use of nanotechnological components, especially in the field of miniaturised medical diagnostics and analytics. The analyses presented and the use of the ImageIR® 9300 provide insights into the performance of MEMS components required for this purpose in order to advance their development.

InfraTec thermography casestudy tu chemnitz
Fig. 4: Temperature profile for Fig. 3, with relative temperature values.
InfraTec thermography casestudy tu chemnitz
Fig. 3: Detailed image of one of the MEMS drive elements, with relative temperature values.

Advant­ages of this Ther­mo­graphy Solu­tions in this Applic­a­tion

InfraTec glossary modules

Modular Concept for Your Flex­ib­ility

The camera can be adapted to all requirements of the user due to modular design of the camera series ImageIR®. This means that a customer-specific thermography system is achieved in every direction. The ImageIR® can also be subsequently retrofitted or upgraded in the event of changing measurement requirements. In this way, maximum investment security is achieved.

InfraTec thermography - Thermal resolution

Thermal Resol­u­tion – Determ­in­a­tion of Differ­ences of Only a Few Millikelvin

For detection of small temperature changes InfraTec's infrared cameras offer thermal resolutions up to < 15 mK in real-time operation. By using the Lock-in Thermography method it is possible to further increase this resolution significantly. For this purpose test objects are periodically excited and non-destructively examined for defects and irregularities.

Integ­rated Trigger / Process Inter­face and Inter­faces – Digit­ally Controlling of a Infrared Camera and External Devices

The internal trigger interface guarantees highly precise, repeatable triggering. Each of the two configurable digital inputs and outputs are used to control the camera or to generate digital control signals for external devices. In this way, for example, the operation of a printed circuit board and the interval of a measurement can be synchronised.

The selection of different camera interfaces allows the processing of analog data, such as the voltage directly through the camera and thus the insertion of this information into the thermal image data. Relevant variables can be included in the evaluations with the software, which makes it easier to draw conclusions about the causes of temperature changes.

InfraTec thermography - Geometrical Resolution

Geomet­rical Resol­u­tion – Effi­cient Analysis of Complex Assem­blies

InfraTec's infrared cameras with cooled and uncooled detectors have native resolutions up to (1,920 × 1,536) IR pixels. Spatially high-resolution thermograms ensure that components and assemblies are imaged down to the smallest detail and thus defects can be reliably detected and precisely localised.

Relevant Indus­tries & Applic­a­tions

thermal imaging in electronics

Elec­tronics & Elec­trical Engin­eering

Measure temperature distributions of smallest electronic components with infrared cameras.

microthermography

Micro-Ther­mo­graphy

Micro-thermography allows for the thermal analysis of smallest structures in the micrometer range, providing a detailed representation of the temperature distribution on complex electronic assemblies.

All branches and application areas